5-Methylcytidine-5'-Triphosphate - (N-1014)

5-Methyl-CTP, 5-Me-CTP, 5mCTP, 5-mCTP
SKU Unit Size Price Qty
N-1014-1 1 µmole
N-1014-5 5 µmole
N-1014-10 10 µmole


RNA methylation signals a plethora of cellular functions including biochemical and metabolic stabilization of RNA, immune response, resistance to antibiotics, mRNA reading frame maintenance, splicing and more. Methylation of the 5 position of cytidine is a common, post-transcriptional modification in a number of RNA species, such as mRNA, miRNA and tRNA. 5-Methylcytidine-5'-Triphosphate (5-Methyl-CTP) is a modified nucleoside triphosphate employed to impart desirable characteristics such as increased nuclease stability, increased translation or reduced interaction of innate immune receptors with in vitro transcribed RNA. 5-Methyl-CTP, as well as Pseudo-UTP and 2-Thio-UTP, have been shown to reduce innate immune stimulation in culture and in vivo while enhancing translation in recent publications by Kormann et al. and Warren et al. Kormann et al. demonstrated the improvement of therapeutic mRNA in vivo delivery by chemical modification. Chemical modifications explored included Pseudo-U, N6-Methyl-A, 2-Thio-U and 5-Methyl-C. The team found that by substituting 25% of the uridine and cytidine with 2-Thio-U and 5-Methyl-C respectively, they were able to significantly decrease toll-like receptor (TLR) mediated recognition of the mRNA in mice. By reducing the activation of the innate immune system, these modifications also increase the stability and longevity of the mRNA in vivo. Warren et al. determined an efficient means of reprogramming multiple human cell types using modified mRNA that can express the four primary reprogramming proteins. These cells are referred to as induced pluripotency stem cells (iPSCs). Warren et al. found that enzymatically synthesized RNA employing 5-Methyl-CTP, Pseudo-UTP and ARCA effectively evaded the cell’s antiviral response, a crucial component in their success.This reduced toxicity associated with repeated transfection with in vitro transcribed mRNA.

Product Details

Catalog No N-1014
Purity ≥95% by AX-HPLC
Extinction Coefficient 7,808 Lmol-1cm-1 at 279 nm
Molecular Formula C10H18N3O14P3 (free acid)
Molecular Weight 497.10 g/mole (free acid)
Salt Form Li+
Concentration 100 mM
Buffer H2O
Recommended Storage -20°C or below
Other Name(s) 5-Methyl-CTP, 5-Me-CTP, 5mCTP, 5-mCTP
Application Aptamers, Epigenetics/DNA Damage, In vitro Transcription, Mutagenesis, Photocrosslinking Studies
Backbone 5'-Triphosphate
Base Analog(s) Cytidine
Sugar Type(s) RNA
Nucleotide Category Base Modified RNA

Technical Documents

Certificate of Analysis

Intellectual Property

Products are for research use only, not for use in diagnostic or therapeutic procedures or for use in humans. Products are not for resale without express written permission of Seller. No license under any patent or other intellectual property right of Seller or its licensors is granted or implied by the purchase unless otherwise provided in writing.

TriLink does not warrant that the use or sale of the products delivered hereunder will not infringe the claims of any United States or other patents or patents pending covering the use of the product alone or in combination with other products or in the operation of any process. All and any use of TriLink product is the purchaser's sole responsibility.


Nguyen, Allen; Zhao, Connie; Dorris, David; Mazumder, Abhijit . Quantitative assessment of the use of modified nucleoside triphosphates in expression profiling: differential effects on signal intensities and impacts on expression ratios.

Karikó, Katalin; Muramatsu, Hiromi; Welsh, Frank A.; Ludwig, János; Kato, Hiroki; Akira, Shizuo; Weissman, Drew . Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability.

Karikó, Katalin; Buckstein, Michael; Ni, Houping; Weissman, Drew . Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA.

Anderson, Bart R.; Muramatsu, Hiromi; Nallagatla, Subba R.; Bevilacqua, Philip C.; Sansing, Lauren H.; Weissman, Drew; Karikó, Katalin . Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation.

Karikó, Katalin; Muramatsu, Hiromi; Ludwig, János; Weissman, Drew . Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA.

Motorin, Yuri; Helm, Mark . RNA nucleotide methylation.

Loh, Yuin-Han; Yang, Jimmy Chen; De Los Angeles, Alejandro; Guo, Chunguang; Cherry, Anne; Rossi, Derrick J.; Park, In-Hyun; Daley, George Q. . Excision of a viral reprogramming cassette by delivery of synthetic Cre mRNA.

Warren, Luigi; Ni, Yuhui; Wang, Jiwu; Guo, Xirong . Feeder-free derivation of human induced pluripotent stem cells with messenger RNA.

Uchida, Satoshi; Itaka, Keiji; Uchida, Hirokuni; Hayakawa, Kentaro; Ogata, Toru; Ishii, Takehiko; Fukushima, Shigeto; Osada, Kensuke; Kataoka, Kazunori . In vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle.

Guo, Xing Rong; Wang, Xiao Li; Li, Man Chol; Yuan, Ya Hong; Chen, Yun; Zou, Dan Dan; Bian, Liu Jiao; Li, Dong Sheng . PDX-1 mRNA-induced reprogramming of mouse pancreas-derived mesenchymal stem cells into insulin-producing cells in vitro.

Wang, Xiao Li; Hu, Pei; Guo, Xing Rong; Yan, Ding; Yuan, Yahong; Yan, Shi Rong; Li, Dong Sheng . Reprogramming human umbilical cord mesenchymal stromal cells to islet-like cells with the use of in vitro–synthesized pancreatic-duodenal homebox 1 messenger RNA

Baba, Miyuki; Itaka, Keiji; Kondo, Kenji; Yamasoba, Tatsuya; Kataoka, Kazunori . Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles.

Huang, Chien-Ling; Leblond, Anne-Laure; Turner, Elizebeth C.; Kumar, Arun Hs; Martin, Kenneth; Whelan, Derek; O'Sullivan, Donnchadh M.; Caplice, Noel M. . Synthetic chemically modified mrna-based delivery of cytoprotective factor promotes early cardiomyocyte survival post-acute myocardial infarction.

Hausburg, Frauke; Na, Silke; Voronina, Natalia; Skorska, Anna; Müller, Paula; Steinhoff, Gustav; David, Robert . Defining optimized properties of modified mRNA to enhance virus- and DNA- independent protein expression in adult stem cells and fibroblasts.

Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren . Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells.

Pratico, Elizabeth D.; Feger, Bryan J.; Watson, Michael J.; Sullenger, Bruce A.; Bowles, Dawn E.; Milano, Carmelo A.; Nair, Smita K. . RNA-Mediated Reprogramming of Primary Adult Human Dermal Fibroblasts into c-kit(+) Cardiac Progenitor Cells.

Wroblewska, Liliana; Kitada, Tasuku; Endo, Kei; Siciliano, Velia; Stillo, Breanna; Saito, Hirohide; Weiss, Ron . Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery.

Andries, Oliwia; Mc Cafferty, Séan; De Smedt, Stefaan C.; Weiss, Ron; Sanders, Niek N.; Kitada, Tasuku . N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice.

Abraham, Meike-Kristin; Nolte, Andrea; Reus, Rebekka; Behring, Andreas; Zengerle, Diane; Avci-Adali, Meltem; Hohmann, Jan David; Peter, Karlheinz; Schlensak, Christian; Wendel, Hans Peter; Krajewski, Stefanie . In vitro Study of a Novel Stent Coating Using Modified CD39 Messenger RNA to Potentially Reduce Stent Angioplasty-Associated Complications.

Endo, Kei; Hayashi, Karin; Saito, Hirohide . High-resolution Identification and Separation of Living Cell Types by Multiple microRNA-responsive Synthetic mRNAs.

Koblas, Tomas; Leontovyc, Ivan; Loukotova, Sarka; Kosinova, Lucie; Saudek, Frantisek . Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors.

Dykstra, Brad; Lee, Jungmin; Mortensen, Luke J.; Yu, Haixiao; Wu, Zhengliang L.; Lin, Charles P.; Rossi, Derrick J.; Sackstein, Robert . Glycoengineering of E-Selectin Ligands by Intracellular versus Extracellular Fucosylation Differentially Affects Osteotropism of Human Mesenchymal Stem Cells.

Zangi, Lior; Oliveira, Marcela S.; Ye, Lillian Y.; Ma, Qing; Sultana, Nishat; Hadas, Yoav; Chepurko, Elena; Später, Daniela; Zhou, Bin; Chew, Wei Leong; Ebina, Wataru; Abrial, Maryline; Wang, Qing-Dong; Pu, William T.; Chien, Kenneth R. . Insulin-Like Growth Factor 1 Receptor-Dependent Pathway Drives Epicardial Adipose Tissue Formation After Myocardial Injury.

Goparaju, Sravan Kumar; Kohda, Kazuhisa; Ibata, Keiji; Soma, Atsumi; Nakatake, Yukhi; Akiyama, Tomohiko; Wakabayashi, Shunichi; Matsushita, Misako; Sakota, Miki; Kimura, Hiromi; Yuzaki, Michisuke; Ko, Shigeru B. H.; Ko, Minoru S. H. . Rapid differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding transcription factors.

Guo, Xing-Rong; Yang, Zhuo-Shun; Tang, Xiang-Jun; Zou, Dan-Dan; Gui, Hui; Wang, Xiao-Li; Ma, Shi-Nan; Yuan, Ya-Hong; Fang, Juan; Wang, Bin; Zhang, Li; Sun, Xu-Yong; Warnock, Garth L.; Dai, Long-Jun; Tu, Han-Jun . The application of mRNA-based gene transfer in mesenchymal stem cell-mediated cytotoxicity of glioma cells.

Sultana, Nishat; Magadum, Ajit; Hadas, Yoav; Kondrat, Jason; Singh, Neha; Youssef, Elias; Calderon, Damelys; Chepurko, Elena; Dubois, Nicole; Hajjar, Roger J.; Zangi, Lior . Optimizing Cardiac Delivery of Modified mRNA.

Michel, Tatjana; Luft, Daniel; Abraham, Meike-Kristin; Reinhardt, Sabrina; Salinas Medina, Martha L.; Kurz, Julia; Schaller, Martin; Avci-Adali, Meltem; Schlensak, Christian; Peter, Karlheinz; Wendel, Hans Peter; Wang, Xiaowei; Krajewski, Stefanie . Cationic Nanoliposomes Meet mRNA: Efficient Delivery of Modified mRNA Using Hemocompatible and Stable Vectors for Therapeutic Applications.

Ehret, Fabian; Zhou, Cun Yu; Alexander, Seth C.; Zhang, Dongyang; Devaraj, Neal K. . Site-Specific Covalent Conjugation of Modified mRNA by tRNA Guanine Transglycosylase.

Leontovyc, Ivan; Habart, David; Loukotova, Sarka; Kosinova, Lucie; Kriz, Jan; Saudek, Frantisek; Koblas, Tomas . Synthetic mRNA is a more reliable tool for the delivery of DNA-targeting proteins into the cell nucleus than fusion with a protein transduction domain.

Chen, Jiahuan; Fu, Yi; Day, Daniel S.; Sun, Ye; Wang, Shiyan; Liang, Xiaodong; Gu, Fei; Zhang, Fang; Stevens, Sean M.; Zhou, Pingzhu; Li, Kai; Zhang, Yan; Lin, Ruei-Zeng; Smith, Lois E. H.; Zhang, Jin; Sun, Kun; Melero-Martin, Juan M.; Han, Zeguang; Park, Peter J.; Zhang, Bing; Pu, William T. . VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis.

Shibata, Tomonori; Fujita, Yoshihiko; Ohno, Hirohisa; Suzuki, Yuki; Hayashi, Karin; Komatsu, Kaoru R.; Kawasaki, Shunsuke; Hidaka, Kumi; Yonehara, Shin; Sugiyama, Hiroshi; Endo, Masayuki; Saito, Hirohide . Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate.

Oh, Sanders; Kessler, John A. . Design, Assembly, Production, and Transfection of Synthetic Modified mRNA.

Wang, Yuhua; Zhang, Lu; Xu, Zhenghong; Miao, Lei; Huang, Leaf . mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma.

Kogut, Igor; McCarthy, Sandra M.; Pavlova, Maryna; Astling, David P.; Chen, Xiaomi; Jakimenko, Ana; Jones, Kenneth L.; Getahun, Andrew; Cambier, John C.; Pasmooij, Anna M. G.; Jonkman, Marcel F.; Roop, Dennis R.; Bilousova, Ganna . High-efficiency RNA-based reprogramming of human primary fibroblasts.

Potapov, Vladimir; Fu, Xiaoqing; Dai, Nan; Corrêa, Ivan R. Jr; Tanner, Nathan A.; Ong, Jennifer L. . Base modifications affecting RNA polymerase and reverse transcriptase fidelity.

Lescan, Mario; Perl, Regine Mariette; Golombek, Sonia; Pilz, Martin; Hann, Ludmilla; Yasmin, Mahua; Behring, Andreas; Keller, Timea; Nolte, Andrea; Gruhn, Franziska; Kochba, Efrat; Levin, Yotam; Schlensak, Christian; Wendel, Hans Peter; Avci-Adali, Meltem . De Novo Synthesis of Elastin by Exogenous Delivery of Synthetic Modified mRNA into Skin and Elastin-Deficient Cells.

Mondal, Nandini; Dykstra, Brad; Lee, Jungmin; Ashline, David J.; Reinhold, Vernon N.; Rossi, Derrick J.; Sackstein, Robert . Distinct human α(1,3)-fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells.

Steinle, Heidrun; Ionescu, Tudor-Mihai; Schenk, Selina; Golombek, Sonia; Kunnakattu, Silju-John; Özbek, Melek Tutku; Schlensak, Christian; Wendel, Hans Peter; Avci-Adali, Meltem . Incorporation of Synthetic mRNA in Injectable Chitosan-Alginate Hybrid Hydrogels for Local and Sustained Expression of Exogenous Proteins in Cells.

Kim, Bo-Eun; Choi, Soon Won; Shin, Ji-Hee; Kim, Jae-Jun; Kang, Insung; Lee, Byung-Chul; Lee, Jin Young; Kook, Myoung Geun; Kang, Kyung-Sun . Single-Factor SOX2 Mediates Direct Neural Reprogramming of Human Mesenchymal Stem Cells via Transfection of In Vitro Transcribed mRNA.

Steinle, Heidrun; Golombek, Sonia; Behring, Andreas; Schlensak, Christian; Wendel, Hans Peter; Avci-Adali, Meltem . Improving the Angiogenic Potential of EPCs via Engineering with Synthetic Modified mRNAs.

Matsuura, S;Ono, H;Kawasaki, S;Kuang, Y;Fujita, Y;Saito, H; . Synthetic RNA-based logic computation in mammalian cells

Ono, H;Kawasaki, S;Saito, H; . Orthogonal protein-responsive mRNA switches for mammalian synthetic biology

Endo, K;Hayashi, K;Saito, H; . High-resolution Identification and Separation of Living Cell Types by Multiple microRNA-responsive Synthetic mRNAs

Sunohara, T;Morizane, A;Matsuura, S;Miyamoto, S;Saito, H;Takahashi, J; . MicroRNA-Based Separation of Cortico-Fugal Projection Neuron-Like Cells Derived From Embryonic Stem Cells

Thuille, N;Sajinovic, T;Siegmund, K;Baier, G; . Chemically modified mRNA nucleofection of primary human T cells

McGrath, PS;Diette, N;Kogut, I;Bilousova, G; . RNA-based Reprogramming of Human Primary Fibroblasts into Induced Pluripotent Stem Cells

Zhao, Y; . Toward Controlling Cardiac Tissue Pacing Using Modified mRNA