My Account | Shopping Cart | Contact
Trilink Biotech Logo

Oligonucleotides | mRNA & Long RNA | Nucleotides | CleanCap™ | CleanTag™ | CleanAmp™ | Custom Chemistry | GMP

OligoBuilder® | Nucleotides List | Stocked mRNA List | DNA Synthesis Reagents List | CleanAmp™ Products List


You are at: All > Nucleotides > Nucleotides by Structural Class > Base Modified Ribonucleoside Triphosphates

N-1013
N6-Methyladenosine-5'-Triphosphate
N6-Methyl-ATP, m6ATP 

N<sup>6</sup>-Methyladenosine-5'-Triphosphate

 

Extinction Coefficient: 15,567 Lmol-1cm-1 at 265 nm
Molecular Weight: 521.2 g/mol (free acid)
Molecular Formula: C11H18N5O13P(free acid)
Salt Form: Lithium
Purity Specification: ≥90% by AX-HPLC 

Shipped at 100 mM in H2O.
1 µmole: 10 µL
5 µmole: 50 µL
10 µmole: 100 µL


 
Certificate(s) of Analysis
 

N6-methyl adenosine (N6-methyl ATP) is a base modified analog of adenosine and is found as a minor nucleoside in natural RNAs (Meyer et al.). N6-methyl ATP can substitute for ATP in some biological systems, and is a potent agonist for P2Y-purinoceptors in the guinea pig, taenia coli (Burnstock et al.). In vitro studies showed that N6-methyl ATP substituted for ATP and supported cytoskeletal filament-driven translocation of motor proteins (dynein, kinesin and myosin) (Schliwa et al. & Shimizu et al.). 

N6-methyl ATP is also a substrate for RNA polymerase and can be used for preparation of modified RNA (Rohayem & Kariko et al.).

 

View Transcription Efficiency FAQ
 



Email a Friend
Product Inquiry
    
Ready To Order?

Please select a size :
   1 µmole ($62.00)
   5 µmoles ($299.00)
   10 µmoles ($486.00)


 



Related Products :

Related Categories :


Reference(s)
Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF.N6-methyladenosine marks primary microRNAs for processing.Nature. 2015 Mar 26
Schwartz S, et. al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell. 2013 Dec 5;155(6):1409-21.
Pardi N, Muramatsu H, Weissman D, Karikó K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol Biol. 2013;969:29-42. doi: 10.1007/978-1-62703-260-5_2.
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop Codons. Cell. 2012. doi: 10.1016/j.cell.2012.05.003
Motorin Y, Helm M. RNA nucleotide methylation. Wiley Interdiscip Rev RNA. 2011 Sep-Oct;2(5):611-31.
Anderson, B.R., Muramatsu, H., Jha, B.K., Silverman, R.H., Weissman, D., Kariko, K. Nucleoside modifications in RNA limit activation of 2'-5'-oligoadenylate synthetase and increase resistance to cleavage by RNase L (2011) Nucleic Acids Research, EPub Aug
Anderson, B., Muramatsu, H., Nallagatla, S.R., Bevilacqua, P.C., Sansing, L.H., Weissman, D. & Kariko, K. Incorporation of pseudouridine into mRNA enhances translation by dimishing PKR activation (2010) Nucleic Acids Research, 38(17): 5884-5892.
Yakamavich J, Baker T, Sauer R. Asymmetric nucleotide transactions of the HslUV protease, Journal of Molecular Yakamavich J, Baker T, Sauer R. Asymmetric nucleotide transactions of the HslUV protease, Journal of Molecular Biology.
Kariko K, Muramatsu H, Welsh F, et al. Incorporation of Pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. (2008) Molecular Therapy (16)11: 1833-1840.
Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modifiation and the Evolutionary Origin of RNA (2005). Immunity, 23(2), 165-175.
Cho HD, Oyelere AK, Strobel SA, Weiner AM. Use of nucleotide analogs by class I and class II CCA-adding enzymes (tRNA nucleotidyltransferase): deciphering the basis for nucleotide selection. (2003) RNA, 3(8): 970-81.
Vaish NK, et al. A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality. (2003) Biochemistry, 42: 8842-8851.
Meyer PR, et. al. Effects of specific zidovudine resistance mutations and substrate structure on nucleotide-dependent primer unblocking by human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother. 2002 May;46(5):1540-5.
Zofall M, Bartholomew B. Two novel dATP analogs for DNA photoaffinity labeling. (2000) Nucleic Acids Res., 28(21): 4382-90.
Missiaen L, Parys JB, Smedt HD, Sienaert I, Sipma H, Vanlingen S, Maes K, Casteels R. Effect of adenine nucleotides on myo-inositol-1,4,5-trisphosphate-induced calcium release. (1997) Biochem J., 325(Pt 3): 661-6.


 

 


  Twitter Twitter Facebook Facebook Linked In Linked In RSS RSS Google RSS  
© 2018 TriLink BioTechnologies, LLC | All Rights Reserved