My Account | Shopping Cart | Contact  
Trilink Biotech Logo

Oligonucleotides | mRNA & Long RNA | Nucleotides | CleanCap® | CleanTag® | CleanAmp® | Custom Chemistry | cGMP

OligoBuilder® | Nucleotides List | Stocked mRNA List | DNA Synthesis Reagents List | CleanAmp™ Products List

You are at: All > Nucleotides > Nucleotides by Structural Class > Base Modified Ribonucleoside Triphosphates




Extinction Coefficient: 13,120 Lmol-1cm-1 at 274 nm
Molecular Weight: 500.2 g/mol (free acid)
Molecular Formula: C9H15N2O14P3(free acid)

Salt Form: Lithium
Purity Specification: ≥95% by AX-HPLC 

Typically shipped at 100 mM in H2O.
1 µmole: 10 µL
5 µmole: 50 µL
10 µmole: 100 µL

Certificate(s) of Analysis

2-Thiouridine-5'-Triphosphate (2-Thio-UTP) is a substrate for several DNA polymerases and will substitute for UTP (Nakayama et al.). 2-Thio-UTP is an inhibitor of norovirus RNA dependent RNA polymerase (Belliot et al.).  RNAs prepared from 2-Thio-UTP is less immunogenic as compared to unmodified RNA. 2-Thio-U modified mRNA shows no activation of RNA-dependent protein kinase (Anderson et al.), significantly reduced levels of 2'-5'-oligoadenylate synthetase activation (Anderson et al.), reduced levels of retinoic acid-inducible protein I (Hornung et al.) and suppression of activation of Toll-like receptors (Kariko et al.). However, 2-Thio-U modified mRNAs show poor translation efficiency in cell-free systems and in cultured cells (Kariko et al., Zimmer et al.). 2-Thio-UTP is a competitive inhibitor of CTP synthetase (Scheit et al.) and a potent and selective agonist of P2Y2 human receptor (El-Tayeb, et al., Jacobson et al., Ko et al., Govindan et al.).

Email a Friend
Product Inquiry
Ready To Order?

Please select a size :
   1 µmole ($91.00)
   5 µmoles ($438.00)
   10 µmoles ($750.00)


Related Products :

Related Categories :

Uchida S, Kataoka K, Itaka K.Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity.Pharmaceutics. 2015 Jul 23
Baba M, Itaka K, Kondo K, Yamasoba T, Kataoka K. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles.J Control Release. 2015 Jan 17;201C:41-48. doi: 10.1016/j.jconrel.2015.01.017
Uchida S, Itaka K, Uchida H, Hayakawa K, Ogata T, Ishii T, Fukushima S, Osada K, Kataoka K. In vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle. PLoS One. 2013;8(2):e56220.
Pardi N, Muramatsu H, Weissman D, Karikó K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol Biol. 2013;969:29-42. doi: 10.1007/978-1-62703-260-5_2.
Govindan S, Taylor CW. P2Y receptor subtypes evoke different Ca(2+) signals in cultured aortic smooth muscle cells. Purinergic Signal. 2012 Jul 6. doi: 10.1007/s11302-012-9323-6
Kormann M, Hasenpusch G, Aneja M, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. (2011) Nature Biotechnology 29:154–157.
Anderson, B.R., Muramatsu, H., Jha, B.K., Silverman, R.H., Weissman, D., Kariko, K. Nucleoside modifications in RNA limit activation of 2'-5'-oligoadenylate synthetase and increase resistance to cleavage by RNase L (2011) Nucleic Acids Research, EPub Aug
Anderson, B., Muramatsu, H., Nallagatla, S.R., Bevilacqua, P.C., Sansing, L.H., Weissman, D. & Kariko, K. Incorporation of pseudouridine into mRNA enhances translation by dimishing PKR activation (2010) Nucleic Acids Research, 38(17): 5884-5892.
Ko H, et. al. Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists. Bioorg Med Chem. 2008 Jun 15;16(12):6319-32.
Kariko K, Muramatsu H, Welsh F, et al. Incorporation of Pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. (2008) Molecular Therapy (16)11: 1833-1840.
Ko H, Fricks I, Ivanov AA, Harden TK, Jacobson KA. Structure-activity relationship of uridine 5'-diphosphoglucose analogues as agonists of the human P2Y14 receptor. J Med Chem. 2007 May 3;50(9):2030-9.
Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G. 5'-Triphosphate RNA is the ligand for RIG-I. Science. 2006 Nov 10;314(5801):994-7.
Besada P, Shin DH, Costanzi S, Ko H, Mathé C, Gagneron J, Gosselin G, Maddileti S, Harden TK, Jacobson KA. Structure-activity relationships of uridine 5'-diphosphate analogues at the human P2Y6 receptor. (2006) Med. Chem., (49)(18): 5532-5543.
Belliot G, Sosnovtcev SV, Chang KO, Babu V, Uche U, Arnold JJ, Cameron CE, Green KY. Norovirus proteinase-polymerase and polymerase are both active forms of RNA-dependent RNA polymerase. (2005) Journal of Virology, 79(4): 2393-2403.
Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modifiation and the Evolutionary Origin of RNA (2005). Immunity, 23(2), 165-175.
Cabedo H, et. al. The Escherichia coli trmE (mnmE) gene, involved in tRNA modification, codes for an evolutionarily conserved GTPase with unusual biochemical properties. EMBO J. 1999 Dec 15;18(24):7063-76.
Veres Z, et al. Synthesis of 5-methylaminomethyl-2-selenouridine in tRNAs: 31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2975-9.
Zimmer M, Scheit KH. The effect of nucleotide analogs on cell-free gene expression. Nucleic Acids Res. 1984 Mar 12;12(5):2243-58.
Nakayama C, Saneyoshi M. Utilizations of various uridine 5'-triphosphate analogues by DNA-dependent RNA polymerases I and II purified from liver nuclei of the cherry salmon (Oncorhynchus masou). J Biochem. 1984 Nov;96(5):1501-9.
Scheit KH, Linke HJ. Substrate specificity of CTP synthetase from Escherichia coli. Eur J Biochem. 1982 Aug;126(1):57-60.



  Twitter Twitter Facebook Facebook Linked In Linked In RSS RSS Google RSS  
© 2019 TriLink BioTechnologies, LLC | All Rights Reserved