Abstract

Next-generation sequencing (NGS) is an evolving tool for nucleic acid sequence identification. NGS is widely used for basic research and discovery as well as clinical diagnostics. It is critical to develop the most accurate and reproducible library preparation techniques, especially when dealing with patient samples. Both DNA and long RNA-Seq have advanced, low input, PCR-free, and automatable library preparation techniques. In the continuously growing field of small RNA (including miRNA, piRNA, RNA, and small RNA), sequencing methods still have limitations including high input requirements and difficulties in automation. Separation of tagged library from adaptor-adaptor ligation products (adapter dimer) has been a persistent challenge due to the minimal size difference between products, which hinders a gel-free workflow. In order to resolve this problem we have screened several chemical modifications of adapter oligos to suppress adapter dimer formation. We introduce a novel method of small RNA library preparation that applies these modified CleanTag™ Adapters and creates the potential for automation without the need for a gel separation to exclude adapter dimer. We replace the gel purification step with a two-step magnetic bead purification for size selection since adapter dimer no longer dominates the reaction. This could be carried out by a liquid handling robot for a fully automated library preparation procedure. Current commercial Bio-不合适 Instance of inputs of 100-1000 ng. Reduction in adapter dimer has allowed for library preparation from much lower starting material (as low as 1 ng). Using 10 ng of total brain RNA input in conjunction with CleanTag™ Adapters, adapter dimers were reduced by over 3,000,000 reads compared to a commercial kit. Additionally, libraries using modified adapters resulted in 1,000,000 more miRNA reads than a commercial kit at this low RNA input. With increased library coverage and decreased side products the data generated from modified adapters brings us closer to analyzing on a single cell level. Our method of small RNA library preparation results in high quality libraries from various tissues, cells, and low RNA input biotissues (e.g. plasma and urine). The ability to use very low inputs and to automate library preparation will allow high throughput sequencing and improved clinical assays.

Figure 1: Small RNA Library Prep Is Prone to Adapter Dimer Formation at Low RNA Inputs

Figure 2: Chemically Modified CleanTag™ Adapters Block Adapter-Adapter Ligation

Sugar Modifications

Backbone Modifications

Adenylate gel in place after PCR at 20°C. "Phases" are defined as the end of the enzyme reaction (up to 35°C) and gel purification (up to 15°C).

Figure 3: Unmodified and Modified CleanTag™ Adapters Tag a Similar Population of miRNA

Figure 4: CleanTag™ Adapters Allow Library Preparation With Low Total RNA Input

Figure 5: Evaluating CleanTag™ for Detection of Single Cell Quantities

Figure 6: Improved Small RNA-Seq Data Using Plasma Samples

Figure 7: Robust Library Preparation from Samples of Low miRNA Abundance Using CleanTag™ Adapters

Figure 8: Even at Low Input, CleanTag™ Adapters Reduce Adapter Dimers While Maintaining Mapped Reads

Figure 9: CleanTag™ Eliminates Need for Gel Purification

Figure 10: CleanTag™ Shows Potential for Automation with Quality Sequencing Data

Figure 11: CleanTag™ Workflow, 1-1000 ng RNA Input

Conclusion

- Reduced adapter dimer with CleanTag™ Adapters
- Improved workflow compared to commercially available kits
- RNA inputs as low as 1 nanogram total RNA
- Robust system tags library even in samples with low miRNA abundance
- Suitable for diagnostic samples with limited RNA
- Bead-based size selection will allow automation by eliminating gel purification

Acknowledgments

Other: Paul R, Sabichi M
NIH SBIR Grant: 1R44HD068200-01A
Robert GS Serial No.: 10/029,680 and PCT Serial No. PCT/US2014/029412
Reaction conditions can be found at www.trilinkbiotech.com/posters

Contact

Sabrina Shore, sshore@trilinkbiotech.com

www.trilinkbiotech.com