Maximizing the Translation and Activity of mRNA Therapeutics
Kirst J. Assian, Dongwon Shin, Jordan M. Henderson, Alexandre Lebebedev, Anton P. McCaffrey and Richard I. Hogge
TriLink BioTechnologies, San Diego, CA 92121, USA.

Abstract
mRNA-based therapeutics avoid the challenges of viral vector delivery and may be able to successfully target several tissues at once. However, many small-molecule drugs require transient expression of therapeutic proteins with higher levels of translation and activity. Enhancing activity in a range of cell types is crucial for success of mRNA therapies.

Figure 1: Cap0, Cap1 and Cap2 Structures of 5'-Ends of mRNAs
- Eukaryotic mRNAs have a Cap0 or Cap1 structure.
- Sensing of proper cap structure is thought to be involved in self/non-self RNA recognition.
- Cap structure influences activation of PRRs.
- Cap0 is activated by Cap0 RNAs but not Cap1 mRNAs (PMD: 182692 and 20675715).
- 5'-ends Cap0 RNAs more tightly than Cap1 mRNAs (PMD: 24317270).
- Co-transcriptional capping with CleanCap™ (Cap1) helps evade an immune response.

Innate immune sensors recognize mRNA
- Transfection of cells with unmodified RNAs can lead to cell death due to activation of innate immune pathways.
- Toll-like receptors 3,7 & 8 recognize different RNA forms.
- Found in endosomes where some viruses enter cells.
- Cytosolic sensors
 - Protein Kinase R (PKR): dsRNA
 - MD-2: RNA
 - IFI44: 5' triphosphate

Figure 2: Capping Efficiency Assay Shows CleanCap™ Yields High Levels of Cap1

Figure 3: Pseudouridine 5'-Triphosphate Derivatives
- mRNA body modifications help to evade an immune response.
- Pseudouridine or 5'-methoxypseudouridine/psu are current industry standard.
- Several novel pseudouridine NPs were synthesized and tested in firefly luciferase transcriptions.

Figure 4: U Depletion of Primary Luciferase Sequence Improves Incorporation of Bulky Pseudouridine Derivatives by T7 Polymerase
- Some pseudouridine derivatives did not incorporate well.
- We depleted the luciferase sequence for Us to try and remedy this.
- U depletion resulted in good incorporation.
- We tested the derivatives that did incorporate for translation and activity.

Figure 5: In Vitro Translation and Cell Activity of Modified Luciferase mRNAs
- U-depleted sequences translated better in wheat germ extracts.
- Bulky pseudouridine modifications did not translate well.
- U-depleted sequences resulted in higher activity in THP-1 cells.
- We therefore continued our studies using the U-depleted sequence.

Figure 6: Pseudouridine Derivatives and 5moU Resulted in Lower Toxicity Compared to WT and PseudoU

Figure 7: Slot Blot Demonstrates that HPLC Purification Depletes dsRNA
- An HPLC method depletes mRNAs of contaminating dsRNA.
- This reduces the innate immune response by reducing PRR activation.

Figure 8: Cell Activity of HPLC vs. non-HPLC Luciferase mRNAs
- HPLC purification dramatically increased the activity of wt mRNA, improved the activity of PsU mRNA but did not alter the activity of 5moU mRNA.
- Could this be because PKR does not bind 5moU mRNA?
- Could this also be due for the Psu2 derivative?

Conclusions
- We have introduced a number of novel modified bases with interesting translational and immunological properties.
- U-depletion improved transcription quality, yield and activity.
- HPLC purification to remove dsRNA reduced toxicity and interferon response and increased activity.
- Interestingly, HPLC purification of 5moU mRNAs did not increase activity.
- One possibility is that 5moU dsRNA is not efficiently recognized by PRRs.
- Translational activity in wheat germ extracts did not directly correlate with cell activity, which may indicate differences in immune stimulation by these mRNAs.

Future Directions
- If 5moU is not recognized by PRRs, then activity of 5moU should be equivalent in PKR−/− and wt +/− mice.
- Measure activity, toxicity and interferon response in THP-1 cells for HPLC purified Psu2 oligonucleotides.

Background: Why mRNA therapeutics?
- mRNA is a popular new tool for gene expression because it:
 - Does not have a risk of insertional mutagenesis.
 - Can transfect difficult cells such as non-dividing cells.
 - Is transient.
- Applications
 - Genome editing (Transposons, CRISPR/Cas9);
 - Vaccines;
 - Gene replacement.
 - Genome editing (Transposons, Cre, ZFNs, TALENs and CRISPR/Cas9).

- Does not have a risk of insertional mutagenesis.
- Transient mRNA expression is also desirable for cellular reprogramming, genome editing and mRNA vaccines.

Limitations
- Innate immune response to unmodified mRNA.
- Solutions
 - Proper capping;
 - Chemical modification of mRNA can prevent innate immune stimulation.
 - Removal of dsRNA.

Limitations
- Innate immune response to unmodified mRNA.
- Solutions
 - Proper capping;
 - Chemical modification of mRNA can prevent innate immune stimulation.
 - Removal of dsRNA.

• Background: Why mRNA therapeutics?
 - mRNA is a popular new tool for gene expression because it:
 - Does not have a risk of insertional mutagenesis.
 - Can transfect difficult cells such as non-dividing cells.
 - Is transient.
 - Applications
 - Genome editing (Transposons, CRISPR/Cas9);
 - Vaccines;
 - Gene replacement.
 - Genome editing (Transposons, Cre, ZFNs, TALENs and CRISPR/Cas9).

- Does not have a risk of insertional mutagenesis.
- Transient mRNA expression is also desirable for cellular reprogramming, genome editing and mRNA vaccines.

Limitations
- Innate immune response to unmodified mRNA.
- Solutions
 - Proper capping;
 - Chemical modification of mRNA can prevent innate immune stimulation.
 - Removal of dsRNA.