Contact

Enzymatic Activity of Selected Nucleoside 5'-Triphosphates and Their Analogs

By Alexandre Lebedev, Ph.D.; TriLink BioTechnologies

Nucleoside 5'-triphosphate derivatives and their analogs (NTPDA) have been extremely helpful in explaining many important details of the mechanism of reactions catalyzed by a family of NTP dependent enzymes. Different versions of NTPDAs represent various modifications of the bases, sugars, triphosphate chain and the combinations of those. Many of the modifications result in changes in the essential properties of the nucleoside 5\'-triphosphates, and most importantly their behavior in the enzymatic reactions.

  1. Substrate activity of NTPDAs often changes compared to that of the parent NTPs (usually reduced).
  2. NTPDAs may become inhibitors of the enzymatic reactions through various mechanisms. For example:
    1. NTPDAs (depending on the type of modification) may physically block the binding, catalytic or allosteric
      sites of the enzyme thus competing with the substrate, the reaction product or an allosteric regulator(s).
    2. NTPDAs may cause a termination of the enzymatic chain reaction by producing a modified product lacking the chemical function required for continuation of the enzymatic process.
    3. NTPDAs possessing a reactive group(s) may also cause a chemical modification of the crucial enzyme functions responsible for substrate recognition, catalytic action, or conformation stability of the peptide structure (or disrupt the association forces keeping the functional multiunit enzymes).

The tables on the following pages are examples of different enzymatic activities of the selected nucleoside 5'-triphosphate derivatives and their analogs. Where it is known, the mode of NTPDA action and the research or practical application(s) is briefly indicated with a reference to a primary source of information.

The data presented in the tables should not be considered as a complete compilation by any means. Rather, it is an overview of the main classes of NTPDAs and illustration of their ability to serve as tools for the different biochemical applications.

Abbreviations used in Tables:

AMV RT Avian Myeloblastosis Virus Reverse Transcriptase
ATPase Adenosine 5'-triphosphatase
ASS Adenylylsuccinate Synthesase
ATP/CTP tRNA NT ATP/CTP Dependent tRNA Nucleotidyl Transferase
DD DP DNA Dependant DNA Polymerase
DD RP DNA Dependant RNA Polymerase
RD DP RNA Dependant DNA Polymerase
RD RP RNA Dependant DNA Polymerase
RNR Ribonucleotide Reductase
PNP Polynucleotide Phosphorylase
Poly(A) Pol Polyadenylate Polymerase
PRPPS Phosphoribosylpyrophosphate Synthesase
TNDT Terminal Nucleotidyl Transferase
tRNA NT tRNA Nucleotidyl Transferase
aa tRNA S Aminoacyl tRNA Synthesase
2',5'-OAS 2',3'-Oligoadenylate Synthesase
HIV RT Human Immunodeficiency Virus Reverse Transcriptase
AC Adenylate Cyclase
GC Guanylate Cyclase
CK Creatine Kinase
HK Hexokinase
PK Pyruvate Kinase
PFK Phosphofructose Kinase


Table 1: Sugar modified nucleoside 5'-triphosphate analogs

Application Mode of Action R2 R1 Base Enzyme class References
DNA Sequencing Chain Termination H H A, C, G, T, I DD DP 1, 2
H OH A, C, G, U DD RP 3-6
F OH A, C, G, U DD RP 14
NH2 OH A, C, G, U DD RP 15-18
Me OH A, C, G, U DD RP 15, 25-27
Substrate OH F A, C, G, U DD DP 13
RNA Sequencing Chain Terminator H OH A, C, G, U RD RP 3, 9
OMe OH A, C, G, U DD RP 25
Me OH A, C, G, U DD RP 15, 25-27
N3 OH A, C, G, U DD RP 15
Synthesis Of Modified DNA Substrate OH F A, C, G, U DD DP 13
Synthesis Of Modified RNA Substrate OH OMe A DD RP 11
NH2 OH A, C, G, U DD RP 15-18
NH2 OH A tRNA-NT 19-21
Ribosomal Research Substrate NH2 OH A tRNA-NT 19-21
Enzymatic Research Inhibition H OH A, C, G, U DD RP 7
H OH A, C, G, U aa tRNA S 8
OH OMe A aa tRNA S 8
OH Ara-OH A, C RNR 10
NH2 OH A, G RD RP, DD RP 22, 23
H OH A Poly(A) Pol 24
NH2 Ara-OH G RD RP DD RP 22
N3 OH A, G RD RP DD RP 22, 23
OMe OH A aa tRNA S 8
CHO CHO A, C, G, U DD RP 30, 31
H OH U, T DD RP 64
Xylo-OH OH U, T DD RP 67
Activation OH OMe A RNR 10
OMe OH A RNR 10
Chain Termination NCS H A DD RP 17
NHC(O)CH2Br OH A DD RP 17
2', 3'-Epoxide 2', 3'-Epoxide A DD DP 28
Modification of Enzyme OH Arylazido A ATP-ase 12
NCS H A DD RP 17
NHC(O)CH2Br OH A DD RP 17
CHO CHO A ATP-ase 29
CHO CHO A aa tRNA S 32-34


Table 2: Base modified nucleoside 5'-triphosphate analogs

Application Mode of Action R Base Enzyme Class References
DNA Sequencing Substrate H 7-Deaza (A,G,I) DD DP 38-41
H N4-Me-C DD DP 46
Synthesis Of Modified DNA Substrate H Benzimidazole DD DP 35
H 5-Me-C DD DP 42-44
H 7-Deaza (A,G) Hum. telomerase 45
H N6,N6-Etheno-2,6-DAP DD DP 47
H Dihydrothymidine DD DP 48
Synthesis Of Modified RNA Substrate OH 5-Br-U DD RP 49
OH 5-I-U DD RP 49
OH 5-I-C tRNA NT 50
OH 5-Formyl U (β anomer) DD RP 53-56
OH 2-Thio U DD RP 59
OH 5-Br-C DD DP 59
OH Formycin A DD RP 60
PCR Substrate H N4-Me-C DD DP 46
Enzymatic Research Substrate H Benzimidazole RNR 10
H 5-Br-U DD RP 36,37
OH 8-Azido-A DD RP 51
OH 5-Formyl U (α anomer) DD RP 53-56
OH 4-Thio-U DD RP 57-59
OH Xanthine ASS 61
Inhibition H 7-Deaza (A,G) Hum. telomerase 45
OH 8-Azido-A aa tRNA S 8
OH 8-Br-A aa tRNA S 8
OH 8-Cl-A aa tRNA S 8
OH 9-Purinyl aa tRNA S 8
Modification of Enzyme H 5-I-U DD RP 49
Ribosomal Research Photomodification of Ribosomal protiens OH 3-(Azidooxymethylphenyl)-G DD DP 52


Table 3: Nucleoside 5'-triphosphate analogs with modified γ-phosphates

Application Mode of Action X Nucleoside Enzyme Class References
Enzymatic Research Substrate Anilide rA DD RP 141
4-Azidoanilide r(A, C, G) DD RP 142 - 144
4-Azidoanilide rA aa tRNA S 145-150
1-(5-sulfonatenapthyl)-amide rA DD RP 160, 161
1-(5-sulfonatenapthyl)-amide r(A,C,G,U) SVPD 162
1-(5-sulfonatenapthyl)-amide d(C, T) SVPD 162
Inhibition Anilide rA aa tRNA S 138-140
4-Azidoanilide rA aa tRNA S 145-150
4-Azidoanilide rA, Etheno-rA CK 151-153
2,4,6-(Me)3-C6H4-C(O)O- rA aa tRNA S 155, 156
BrCH2C(O)NH-C6H4O- rG Ribosome 159
4-(N-2-Chloroethyl, N-methylamino)-benzylamide dA, dT RD DP, DD DP, HK 163-165
N-Methyl,N-(4-azidobenzyl)-amide rA aa tRNA S 124, 148
Enzyme Modification N3 rG DD RP 154
2,4,6-(Me)3-C6H4-C(O)O- rA ATP-ase 157
FSO2-C6H4-C(O)O- rA PK 158
4-(N-2-Chloroethyl, N-methylamino)-benzylamide dA, dT RD DP, DD DP, HK 163-165
N-Methyl,N-(4-azidobenzyl)-amide rA aa tRNA S 124, 148
Cyclic trimetaphosphate* rA, Etheno-rA aa tRNA S 166
Cyclic trimetaphosphate* rA DD RP 167, 168
Enzyme Photo- Modification 4-Azidoaniline r(A, C, G) DD RP 142 - 144
4-Azidoaniline rA aa tRNA S 145-150
4-Azidoaniline rA, Etheno-rA CK 151-153
4-Azidobenzylamide rG DD RP 154

*Nucleoside 5'-Trimetaphosphate

Table 4: Nucleoside 5'-triphosphate analogs with modified triphosphate chain

Application Mode of Action X Y R1 R2 R3 Nucleoside Enzyme Class References
DNA Sequencing Substrate O O O- O- S- dA, dT DD DP 110-117
O O O- O- S- d(A,C,G,T) DD DP 118
O O O- O- BH3 5-(Me,Et,Br,or I) C DD DP 137
Synthesis Of Modified DNA Substrate O O O- O- S- dA, dT DD DP 110-117
O O O- O- Me dT DD DP, TDNT, HIV-RT, AMV-RT 133, 134
Enzymatic Research Inhibition CF2 O O- O- O- rG DD DR 66
CH2 O O- O- O- rA Various enzymes 67-70
CH2 O O- O- O- rA PFK 72
O CH2 O- O- O- rA AC 73
NH O O- O- O- rA, rG Various enzymes 74-82
O NH O- O- O- rA Various enzymes 67-69
Substrate CH2 O O- O- O- rA CK 71
CH2 O O- O- O- rA DD DP 66
O CH2 O- O- O- rA CK 71
O NH O- O- O- rA DD RP, CK 83
O O O- O- S- r(A,C,G,U) Myosine 84, 85
O O O- O- S- rA Kinases 86-92
O O O- O- S- rA PRPPS 93
O O O- O- S- rA, rG DD RP 94-99
O O O- O- S- rA 2\',5\' OAS 100, 101
O O O- O- S- rA PNP 102, 103
O O O- O- S- rA tRNA NT 104
O O O- O- S- rA RNA ligase 105
O O O- O- S- rA GS 106
O O O- O- S- rA AS 107, 108
O O O- O- S- rA UDP GPP, GP UT 109
O O O- O- S- dA, dT DD DP 110-117
O O O- O- S- dA AMV RT 119
O O O- S- O- rA Kinases 86-92, 120-122
O O O- S- O- rA aa tRNA S 123, 124
O O O- S- O- rA ATP-ase 125
O O O - S - O - dA DD DP 110-111
O O S - O - O - rA Kinases 126-129
O O S - O - O - rA, rG ATP and GTP-ases 125, 130-132
O O O - O - Me dT DD DP, TDNT, 133, 134
O O O - O - BH3 d(A,C,G,T) HIV-RT, AMV-RT DD DP 135, 136


Table 5: Sugar and Base modified nucleoside 5'-triphosphate analogs

Application Mode of Action R1 R2 Base Enzyme Class References
DNA Sequencing Chain Terminator NH2 H 5-(2-Br-vinyl)-U DD DP 35
NH2 H 5-(2-Br-vinyl)-U AMV RT 35
N3 H 5-(2-Br-vinyl)-U DD DP 35
N3 H 5-(2-Br-vinyl)-U AMV RT 35
RNA Sequencing Inhibition of DNA synthesis H OH 5-F-C DNA Primase 7
H OH 5-F-U DNA Primase 7
Enzymatic Research Inhibition N3 H Ribavirin RD RP 22
Xylo-OH OH 5-F-U DD RP 64
Xylo-OH OH 5-Cl-U DD RP 64
Xylo-OH OH 5-Br-U DD RP 64
Xylo-OH OH 5-I-U DD RP 64
Xylo-OH OH 5-Ethyl-U DD RP 64
Xylo-OH OH 5-Propyl-U DD RP 64
Xylo-OH OH 5-Butyl-U DD RP 64
Modification of Enzyme CHO CHO Etheno-A Nitrogenase 65
Photo-Modification of Enzyme OH OH 8-Azido-A DD RP 62
Arylazido OH 8-Azido-A ATP-ase 63

 

References

  1. Sanger, F., Nicklen, S., and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. U.S.A., vol.74, pp. 5463-5467
  2. Tabor, S., and Richardson, C. C. (1989) Proc. Natl. Acad. Sci. U.S.A., vol.86, pp.4076-4080
  3. Axelrod, V.D., and Kramer, F.R. (1985) Biochemistry, vol.24, pp.5716-5723.
  4. Saneyoshi, M., Tohyama, J., Nakayama, C., Takiya, S., and Iwabuchi, M. (1981) Nucleic Acids Res., vol.9, pp.3129-3138
  5. Suchodolnik, R. J. (1979) Progr. Nucleic Acid Res. Mol. Biol., vol.22, pp.193-292
  6. Parvin, J. D., Smith, F. I., and Palese, P. (1986) DNA, vol.5, pp.167-171
  7. Izuta, S., Koshaka-Ichikawa, M., Yamaguchi, T., and Saneyoshi, M. (1996) J.Biochem (Tokyo), vol.119, pp.1038-1044
  8. Freist, W., and Cramer, F. (1980) Eur. J. Biochem., vol.107, pp.47-50
  9. Kramer, F.R., and Mills, D.R. (1978) Proc. Natl. Acad. Sci. U.S.A., vol.75, pp. 5334-5338
  10. Follmann, H., and Hogenkamp, H. P. C. (1971) Biochemistry vol.10, pp. 186-192
  11. Gerard, G. F., Rottman, F., and Boezi, J. A. (1971) Biochemistry, vol.10, pp.1974-1980
  12. Russel J., Stella J., Guillroy J. J., and Guillroy R. J. (1976) Biochem. Biophys. Res. Comm., vol.70, pp.1225-1234
  13. Ono, T., Scalf, M., and Smith, L.M. (1997) Nucleic Acids Res., vol.25, pp. 4581-4588
  14. Mikhailopulo, I.A., Prikota, T.I., Poopeiko, N.E., Sivets, G.G., Kvasyuk, E.I., Sviryaeva, T.V., Savochkina, L.P., and Bibilashvilli, R.S. (1989) FEBS Lett., vol.250, pp.139-141
  15. Kutateladze, T., Beabealasvilli, R., Azhaev, A., and Kraevsky A. (1983) FEBS Lett., vol.153, pp.420-426
  16. Trauman, J.T., and Klenow H. (1968) Mol. Pharmacol., vol.4, pp.77-86
  17. Armstrong, V.W., and Eckstein, F. (1979) Biochemistry, vol.18, pp.5117-5122
  18. Armstrong, V.W., and Eckstein, F. (1976) Eur. J. Biochem., vol.70, pp.33-38
  19. Fraser, T.H., and Rich, A. (1974) Proc. Natl. Acad. Sci. U.S.A., vol.72, pp.3044-3047
  20. Sprinzl, M., and Cramer F. (1979) Prog. Nucleic Acid Res. Mol. Biol., vol.22, pp. 2-70
  21. Kukhanova, M., Victorova, L., Bourd, S., Gottikh, B., Krayevsky, A., and Sprinzl, M. (1981) FEBS Lett., vol.118, pp.176-179
  22. Pravdina, N. F., Papchikhin, A. V., Purygin, P. P., and Galegov, G. A. (1989) Mol. Genet., Mikrobiol.Virusol. pp.29-33 (in Russian)
  23. Pravdina, N. F., Kraevskii, A. A., Skaptsova, N. V., Florent'ev, V. L., and Galegov, G.A. (1987) Mol. Genet., Mikrobiol.Virusol. pp.39-42 (in Russian)
  24. Rose, K. M., Bell, L. E., and Jacob, S. T. (1977) Nature, vol.267, pp.178-180
  25. Axelrod, V. D., Vartikyan, R. M., Aivazashvilli, V. A., and Bebelasvilly R. S. (1978) Nucleic Acids Res., vol.5, pp.3549-3563
  26. Aivazashvili, V. A., Mickailov, S. N., Padyukova, N. S., Karpeisky, M. Y., and Bibilashvili, R. S. (1986) Bioorgan. Khim., vol.12, pp.708-710 (in Russian)
  27. Aivasashvili, V. A., Beabealashvili, R. Sh., and Florentiev, V. L. (1977) Molekul. Biol., vol.11, pp.854-863 (in Russian)
  28. Abboud M. M., Sim W. J., Loeb L. A., and Mildvan A. S. (1978) J. Biol. Chem., vol.253, pp.3415-3421
  29. Kumar, G., Karla, V. K., and Brodie, A. F. (1979) J. Biol. Chem., vol.254, pp.1964-1971
  30. Malcolm A. D., Moffatt J. R. (1978) Biochem. J., vol.175, pp.189-192
  31. Slepneva I. A. (1980) Molec. Biol. Rep., vol. 6, p.31-34
  32. Fayat G., Hountondji C., and Blanquet S. (1979) Eur. J. Biochem., vol.96, pp.87-92
  33. Gorshkova I. I., et al. (1981) Biokhimia, vol.46, pp.699-707 (In Russian)
  34. Baltzinger M., Fasiolo F., and Remy P. (1979) Eur. J. Biochem., vol.97, pp.481-494
  35. Atrazhev, A. M., Dyatkina, N. B., Rozovskaya, T. A., Aleksandrova, L. A., Chidzhavadze, Z. G., and Von Janta-Lipinski, M. (1987) Bioorgan. Khim., vol.13, pp.1375-1381 (in Russian)
  36. Ovchinnikov, Yu. A., Efimov, V. A., Chekhmakhcheva O. G., et. al. (1981) Biorgan. Khimia, vol.7, pp.485-493
  37. Ovchinnikov, Yu. A., Efimov, V. A., and Chekhmakhcheva O. G. (1979) Biorgan. Khimia, vol.5, pp.138-143
  38. Barr et al. (1986) Bio Techniques, vol.4, pp.428-432
  39. Mizusawa, S., Nishimura, S., and Seela, F. (1986) Nucleic Acids Res., vol.14, pp.1319-1324
  40. Seela F., and Roling A. (1991) Nucleic Acids Res., vol.20, pp.55-61
  41. Dierick H., Stul M., De Kelver W., Marynen P., and Cassiman J.-J. (1993) Nucleic Acids Res., vol.21, pp.4427-4428
  42. Ono, T., Uehara, Y., Kurishita, A., Tawa, R., and Sakurai, H. (1993) Age Ageing (Eng.), vol.22, (Supplement. No.1) pp.S34-S43
  43. Munzel, P.A., Pfohl-Leszkowicz, A., Röhrdanz, E., Keith, G., Dirheimer, G., and Bock, K. W. (1991) Biochem. Biopharmacol., vol.42, pp.365-371
  44. Hernandez, L., Petropoulos, C. J., Hughes, S. H., and Lijinsky, W. (1991) Mol. Carcinog., vol.4, pp.203-209
  45. Fletcher, T. M., Salazar, M., and Chen, S.-F. (1996) Biochemistry, vol.35, pp.15611-15617
  46. Li S., Haces A., Stupar L., Gebeyehu G., and Pless R. C. (1993) Nucleic Acids Res., vol.21, pp.2709-2714
  47. Cowart, M., and Benkovic, S. J. (1991) Biochemistry, vol.30, pp.788-796
  48. Ide, H., and Wallace, S. S. (1988) Nucleic Acids Res., vol.16, pp.11339- 11354
  49. Sverdlov, E. D., Tsarev, S. A., and Begar, V. A. (1980) FEBS Lett., vol.114, pp.111-114
  50. Sprinzl, M., van der Haar, F., Schlimme, H.S., and Cramer F. (1972) Eur. J. Biochem., vol.25, pp.262-266
  51. Cartwright, I. L., and Hutchinson, D. W. (1980) Nucleic Acids Res., vol.8, pp.1675-1691
  52. Maasen, J. A., and Moller, W. (1978) J. Biol. Chem., vol.253, pp.2777-2783
  53. Armstrong V.W., Sternbach H., and Eckstein F. (1976) Biochemistry, vol. 15, pp.2086-2091
  54. Armstrong V.W., Sternbach H., and Eckstein F. (1977) Methods Enzymol., vol. 46, pp.346-352
  55. Armstrong V.W., Sternbach H., and Eckstein F. (1975) Z. Physiol. Chem., vol.356, pp.218-219
  56. Armstrong V.W., Sternbach H., and Eckstein F. (1974) FEBS Lett., vol.44, pp.157-159
  57. Frischauf A. M., and Scheit K. H. (1973) Biochem Biophys. Res. Communs., vol.53, pp.1227-1223
  58. Scheit K. H., and Frischauf A. M. (1974) Z. Physiol. Chem., vol.335, pp.759-763
  59. Nawrot, B., Hottmuller, P., and Sprinzl, M. (1996) Chemical Papers-Chemicke Zvesti, vol.50, pp.151-155
  60. Piccirilli, J. A., Moroney, S. E., and Benner, S. A. (1991) Biochemistry, vol.30, pp.10350-10356
  61. Kang C., Sun N., Honzatko R. B., and Fromm H.J. (1994) J. Biol. Chem., vol.269, pp.24046-24049
  62. Woody, A.-Y. M., Vader, C. R., Woody, R. W., and Haley, B. E. (1984) Biochemistry, vol.23, pp.2843-2848
  63. Schafer, H.-J., Scheurich, P., Rathgeber, G., et al. (1980) Biochem., Biophys. Res. Commun., vol.95, pp.562-568
  64. Nakayama C., and Saneyoshi M. (1985) J. Biochem., vol. 98, pp.417-425
  65. Gvozdev, R. I., Kotelnikov, A. I., Pivovarov, A. D., et. al. (1975) Bioorgan. Khimia, vol.1, pp.1207-1214
  66. Arabshahi, L., Khan, N. N., Butler, M., Noonan, T., Brown, N. C., and Wright, G. E. (1990) Biochemistry, vol.29, pp.6820-6826
  67. Picher, M., Sevigny, J., D'Orleans-Juste, P., and Beaudoin, A. R. (1996) Biochem. Pharmacol., vol.51, pp.1453-1460
  68. Aksoy, M. O., and Kelsen, S. G. (1994) Am. J. Respir. Cell Mol. Biol., vol.10, pp.230-236
  69. Thévenod, F., Anderie, I., and Schulz, I. (1994) J. Biol. Chem., vol.269, pp.24410-24417
  70. Tobin, T., Akera, T., Lee, C. Y., and Brody, T. M. (1974) Biochem. Biophys. Acta, vol.345, pp.102-117
  71. Milner-White, E. J., and Rycroft, D. S.(1983) Eur. J. Biochem., vol.133, pp.169-172
  72. Barzu O., Tilinca R., Porutui D. et al.(1977) Arch. Biochem. Biophys., vol.182, pp.42-51
  73. Krug, F., Parikh, I., Illiano, G., and Cuatrecasas, P. (1973) J. Biol. Chem., vol.248, pp.1203-1206
  74. Wang, Z. W., and Kotlikoff, M. I. (1996) Am. J. Physiol., vol.271, pp.L100-L105
  75. Hehl, S., and Neumcke, B. (1994) Eur. Biophys. J., vol.23, p.231.
  76. Yeung, S.-M. H., and Green, R. D. (1983) J. Biol. Chem., vol. 258, pp.2334-2339
  77. Krall, F. J., Leshon, S. C., and Korenman, S. G. (1982) Biochem. J., vol.205, pp.249-255
  78. Miller, L. D. P., Petrozzino, J. J., and Connor, J. A. (1995) J. Neurosci., vol.15, pp.8320-8330
  79. Paz, M. M., Ramos, M., Ramirez, G., and Souza, D. (1994) FEBS Lett., vol.355, pp.205-208
  80. Kopf, G. S., and Woolkalis, M. J. (1991) Methods Enzymol., vol.195, p.257- 266
  81. Yount, R. G., Babkock, D., Ballantyne, W., Ojala, D.(1971) Biochemistry, vol.10, pp.2484-2489
  82. Gresser, M. J., Beharry, S., and Moennich, D. M. C. (1984) Curr. Topics Cell Regul., vol.24, p.365-378
  83. Ma Q-F., Babbitt P. C., and Kenyon G. L. (1988) J. Am. Chem. Soc., vol. 10, pp. 4060-4061
  84. Connolly, B. A., and Eckstein, F. (1981) J. Biol. Chem., vol. 256, pp.9450-9456
  85. Eckstein, F., and Goody, R. S. (1976) Biochemistry, vol.15, pp.1685-1691
  86. Jaffe, E. K., and Cohn, M. (1979) J. Biol. Chem., vol.254, pp.10839-10845
  87. Jaffe, E. K., Nick, J., and Cohn, M. (1982) J. Biol. Chem., vol.256, pp.7650-7656
  88. Burgers, P. M. J., and Eckstein (1980) J. Biol. Chem, vol.255, pp.8229-8233
  89. Cohn, M., Shin, H., and Nick, J. (1982) J. Biol. Chem., vol.257, pp.7646-7649
  90. Romaniuk, P. J., and Eckstein, F. (1981) J. Biol. Chem., vol.256, pp.7322-7328
  91. Tomasselli, A. G., and Noda, I. H. (1983) Eur. J. Biochem., vol.132, pp.109-115
  92. Kalbitzer, H. R., Marquetant, R., Connolly, B. A., and Goody, R. S. (1983) Eur. J. Biochem., vol.133, pp.221-227
  93. Gibson, K. J., and Switzer, R. L. (1980) J. Biol. Chem., vol.255, pp.694-696
  94. Armstrong, V. W., Yee, D., and Eckstein, F. (1979) Biochemistry, vol.18, pp.4120-4123
  95. Matzura, H., and Eckstein, F. (1968) Eur. J. Biochem., vol.3, pp.448-452
  96. Eckstein, F., and Gindl, H. (1970) Eur. J. Biochem., vol.13, pp.558-564
  97. Eckstein, F., Armstrong, V. W., and Sternbach, H. (1976) Proc. Natl. Acad. Sci. U.S.A., vol.73, pp.2987-2990
  98. Burgers, P. M. J., and Eckstein (1978) Proc. Natl. Acad. Sci. U.S.A., vol.75, pp.4798-4800
  99. Yee, D., Armstrong, V. W., and Eckstein, F. (1979) Biochemistry, vol.18, pp.1245-1252
  100. Suhadolnik, R. J., and Choongeun, L. (1985) Biochemistry, vol.24, pp.551-555
  101. Karilo, K., Sobol, R. W., Jr., Suhadolnik, L., Li, S.-W., Reichenbach, N. L., Suhadolnik, R. J., Charubala, R., and Pfleiderer, W. (1987) Biochemistry, vol.26, pp.7127-7135
  102. Burgers, P. M. J., and Eckstein F. (1979) Biochemistry, vol.18, pp.450-454
  103. Marlier, J. F., Bryant, F. R., and Benkovic, S. J. (1981) Biochemistry, vol.20, pp.2212-2219
  104. Eckstein, F., Sternbach, H., and von der Haar, F. (1977) Biochemistry, vol.16, pp.3429-3432
  105. Bryant, F. R., and Benkovic, S. J. (1982) Biochemistry, vol.21, pp.5877-5885
  106. Senter, P. D., Eckstein, F., Mülsch, A., and Böhme, E. (1983) J. Biol. Chem., vol.258, pp.6741-6745
  107. Gerlt, J. A., Coderre, J. A., and Wolin, M. S. (1980) J. Biol. Chem., vol.255, pp.331-334
  108. Eckstein, F., Romaniuk, P. J., Heideman, W., and Storm, D. R. (1981) J. Biol. Chem., vol.256, pp.9118-9120
  109. Sheu, K.-F. R., Richard, J. P., and Frey, P. A. (1979) Biochemistry, vol.18, pp.5548-5556
  110. Eckstein, F., and Thomson, B. J. (1995) Methods in Enzymol., vol. 262, pp. 189-202
  111. Burgers, P. M. J., and Eckstein (1979) J. Biol. Chem, vol.254, pp.6889-6893
  112. Brody, R.S., and Frey, P.A. (1981) Biochemistry, vol.20, pp.1245-1252
  113. Romaniuk, P. J., and Eckstein, F. (1982) J. Biol. Chem., vol.257, pp.7684- 7688
  114. Gupta, A., DeBrosse, C., and Benkovic, S. J. (1982) J. Biol. Chem., vol.257, pp.7689-7692
  115. Brody, R. S., Adler, S., Modrich, P., Stec, W. J., Lesnikowski, Z. J., and Frey, P. A. (1982) Biochemistry, vol.21, pp.2570-2572
  116. Eckstein, F., and Jovin, T. M., (1983) Biochemistry, vol.22, pp.4546-4550
  117. Gerlt, J. A., Demon, P. C., and Mehdi, S. (1982) J. Amer. Chem. Soc., vol.104, pp.2848-2856
  118. Nakamaye K. L., Gish G., Eckstein F., and Vosberg H.-P. (1988) Nucleic Acids Res., vol.16, pp.9947-9959
  119. Barlett, P. A., and Eckstein, F. (1982) J. Biol. Chem., vol.257, pp.8879-8884
  120. Darby, M. K., and Trayer, I. P. (1982) Eur. J. Biochem., vol.129, pp.555-560
  121. Lee, C. S., and O'Sullivan, W. J. (1984) Biochim. Biophys. Acta, vol.787, pp.131-137
  122. Bolen, D. W., Stingelin, J., Bramson, H. N., and Kaizer, E. T. (1980) Biochemistry, vol.19, pp.1176-1182
  123. Connolly, B. A., von der Haar F., and Eckstein, F. (1980) J. Biol. Chem., vol.255, pp.11301-11307
  124. Smith, L. T., and Cohn, M. (1982) Biochemistry, vol.21, pp.1530-1534
  125. Senter, P. D., Eckstein, F., and Kagawa, Y. (1983) Biochemistry, vol.22, pp.5514-5518
  126. Orr., G. A., Simons, J., Jones, S. R., Chin, G. J., and Knowels, J. R. (1978) Proc. Natl. Acad. Sci. U.S.A, vol.75, pp.2230-2233
  127. Richard, J. P., and Frey, P. A. (1978) J. Amer. Chem. Soc., vol.100, pp.7757-7758.
  128. Richard, J. P., and Frey, P. A. (1982) J. Amer. Chem. Soc., vol.104, pp.3476-3481
  129. Pliura, D. H., Schomburg, D., Richard, J. P., Frey, P. A., and Knowels, J. R. (1980) Biochemistry, vol.19, pp.325-329
  130. Tsai, M. D., and Chang, T. T. (1980) J. Amer. Chem. Soc., vol.102, pp.5416-5418
  131. Webb, M. R., Trentham, D. R. (1980) J. Biol. Chem., vol.255, pp.1775-1779
  132. Webb, M. R. (1982) Methods Enzymol., vol.87, pp.301-316
  133. Higuchi, H., Endo, T., and Kaji, A. (1990) Biochemistry vol.29, pp.8747-9753
  134. Victorova, L. S., Dyatkina, N. B., Mozzherin, D., Atrazhev, A. M., Krayevsky, A. A., and Kukhanova, M. K. (1992) Nucleic Acids Res., vol.20, pp.783-789
  135. Li, H., Porter, K., Huang, F., and Shaw, B. R. (1995) Nucleic Acids Res., vol.23, pp.4495-4501
  136. Tomasz, J., Shaw, B. R., Porter, K., Spielvogel, B.F., and Sood, A. (1992) Angew. Chem, vol.104, p.1404
  137. He K., Porter K. W., Hasan A, Briley J. D., and Shaw B. R. (1999) Nucleic Acids Res., vol.27, pp.1788-1794
  138. Babkina, G. T., Knorre, V. L., Knorre, D. G., and Lavrik, O. I. (1974) Dokl. Akad. Nauk SSSR, vol.216, pp.1165-1167 (in Russian)
  139. Ankilova, V. N., Knorre, D. G., Kravchenko, V. V., Lavrik, O. I., and Nevinsky, G. A. (1975) FEBS Lett., vol.60, pp.172-175
  140. Akhverdyan, V. Z., Kisselev, L. L., Knorre, D. G., Lavrik, O. I., and Nevinsky, G. A. (1976) Dokl. Akad. Nauk SSSR, vol.226, pp.698-701 (Russian)
  141. Grachev M. A., and Zaychikov E. F. (1974) FEBS Lett., vol.49, pp.163-167
  142. Sverdlov E. D., Tsarev S. A., and Levitan, T. L. (1979) in "Macromolecules in functioning cell" / Salvatore F., and Marino, G., ed., N.Y., Plenum Press, pp.149-158
  143. Sverdlov E. D., Tsarev S. A., Modyanov, N. N., et. al. (1978) Bioorgan Khimia, vol.4, pp.1278-1280
  144. Grachev, M. A., and Zaychikov, E. F. (1981) FEBS Lett., vol.137, pp.23-26
  145. Akhverdyan V. Z., Kisselev L. L., Knorre D. G. et al. (1977) J. Mol. Biol., vol.113, pp.475-501
  146. Budker V. G., Knorre D. G., Kravchenko V. V. et al. (1974) FEBS Lett., vol.49, pp.159-162
  147. Bulychev, N. V., Lavrik, O. I., and Nevinsky, G. A. (1980) Molekul. Biol., vol.14, pp.558-567 (Russian)
  148. Lavrik, O. I., Nevinsky, G. A., and Ryazankin, I. A. (1979) Molekul. Biol., vol.13, pp.1001-1011 (Russian)
  149. Nevinsky, G. A., Lavrik, O. I., Favorova, O. O., Kisselev, L. L. (1979) Biorg. Khimia, vol.5, pp.352-364 (Russian)
  150. Krauspe, R. and Lavrik, O. I. (1980) In Proc. Conf. "Biol. Implications of Nucleic Acid - Protein Interactions", Augustinjak J. Ed., N. Y. - Oxford, Elsevier / North - Holland Biomedical Press, pp.452-454
  151. Nevinsky, G. A., and Denisov, A.Yu. (1981) Bioorgan. Khimia, vol.7, pp.1693-1700 (Russian)
  152. Denisov A. Yu., Nevinskii G.A., and Lavrik O.I. (1982) Biokhimiya (Moscow), vol.47, pp.184-190. (Russian)
  153. Denisov A. U., Nevinsky G.A., and Lavrik O.I. (1982) Bioorgan. Khimia, vol.8, pp.72-79 (Russian)
  154. Sverdlov E. D., Tsarev S. A., and Kuznetsova H. F. (1980) FEBS Lett., vol.112, pp.296-298
  155. Kovaleva G. K., et al. (1978) Biokhimia, Vol. 43, pp.525-534 (Russian)
  156. Krauspe, R., Kovaleva, G. K., Gulyaev, N. N., et. al. (1978) Biokhimia, vol.43, pp.656-661 (Russian)
  157. Kozlov, I. A., Shalamberidze, M. V., Novikova, I. Yu., et. al. (1977) Biokhimia, vol.42, pp.1704-1710 (Russian)
  158. Likos, J. J., and Colman, R. F. (1981) Biochemistry, vol.20, pp.491-499
  159. Eckstein, F., Bruns, W., and Parmeggiani, A. (1975) Biochemistry, vol.14, pp.5225-5232
  160. Yarbrough, L. B. (1978) Biochem. Biophys. Res. Commun., vol.81, pp.35-41
  161. Yarbrough, L. B., Schlageck, J. G., and Baughman, M. (1979) J. Biol. Chem., vol.254, pp.12069-12073
  162. Pollack, S., and Auld, D.S. (1982) Analytical Biochemistry, vol.127, pp.81-88.
  163. Buneva V. N., Kudryashova N.V., Kurbatov V.A., and Romashenko, A.G. (1978) Biokhimia, vol. 43, pp.2261-2263 (Russian)
  164. Buneva V. N., Demidova T., Knorre D.G., et al. (1980) Molek. Biologia, vol.14, pp.1080-1087 (Russian)
  165. Buneva, V. N., Dobrikova, E. J., and Knorre, D. G. (1981) FEBS Lett., vol.135, pp.159-163
  166. Vlassov, V. V., Grachev, M. A., Lavrik, O. I. (1983) "Affinity Modification of Biopolymers", p.173, Knorre, D. G. ed., Novosibirsk, Nauka (Russian)
  167. Smirnov, Yu. B., Lipkin, V. M., Ovchinnikov, Yu. A., et. al. (1981) Bioorgan. Khimia, vol.7, pp.1113-1116168. Grachev, M. A., and Mustayev, A. A. (1982) FEBS Lett., vol.137, pp.89-94