N1-Methylpseudouridine-5'-Triphosphate - (N-1081)

N1-Methylpseudo-UTP, 1-Methylpseudo-UTP
SKU Unit Size Price Qty
N-1081-1 1 µmole
N-1081-5 5 µmole
N-1081-10 10 µmole
N-1081-100 100 µmole


N1-Methyl-Pseudouridine-5'-Triphosphate is a modified NTP for incorporation into messenger RNAs (mRNA) using T7 RNA Polymerase. Incorporation of N1-methylpseudouridine can reduce the immunogenicity of the resulting mRNA.

Product Details

Catalog No N-1081
Purity ≥90% by AX-HPLC
Extinction Coefficient 8,877 Lmol-1cm-1 at 271 nm
Molecular Formula C10H17N2O15P3 (free acid)
Molecular Weight 498.10 g/mole (free acid)
Salt Form Li+
Concentration 100 mM
Buffer H2O
Recommended Storage -20°C or below
Other Name(s) N1-Methylpseudo-UTP, 1-Methylpseudo-UTP
Application Aptamers, Epigenetics/DNA Damage, In vitro Transcription, Mutagenesis, Photocrosslinking Studies
Backbone 5'-Triphosphate
Base Analog(s) Pseudouridine
Sugar Type(s) RNA
Nucleotide Category Base Modified RNA

Technical Documents

Certificate of Analysis

Intellectual Property

Products are for research use only, not for use in diagnostic or therapeutic procedures or for use in humans. Products are not for resale without express written permission of Seller. No license under any patent or other intellectual property right of Seller or its licensors is granted or implied by the purchase unless otherwise provided in writing.

TriLink does not warrant that the use or sale of the products delivered hereunder will not infringe the claims of any United States or other patents or patents pending covering the use of the product alone or in combination with other products or in the operation of any process. All and any use of TriLink product is the purchaser's sole responsibility.


Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L.; Tam, Ying K.; Madden, Thomas D.; Hope, Michael J.; Weissman, Drew . Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes.

Pardi, Norbert; Parkhouse, Kaela; Kirkpatrick, Ericka; McMahon, Meagan; Zost, Seth J.; Mui, Barbara L.; Tam, Ying K.; Karikó, Katalin; Barbosa, Christopher J.; Madden, Thomas D.; Hope, Michael J.; Krammer, Florian; Hensley, Scott E.; Weissman, Drew . Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies.

Tiwari, Pooja Munnilal; Vanover, Daryll; Lindsay, Kevin E.; Bawage, Swapnil Subhash; Kirschman, Jonathan L.; Bhosle, Sushma; Lifland, Aaron W.; Zurla, Chiara; Santangelo, Philip J. . Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection.

Laczk . A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice

Lockhart, JH;VanWye, J;Banerjee, R;Wickline, SA;Pan, H;Totary-Jain, H; . Self-assembled miRNA-switch nanoparticles target denuded regions and prevent restenosis

Leppek, K;Byeon, GW;Kladwang, W;Wayment-Steele, HK;Kerr, CH;Xu, AF;Kim, DS;Topkar, VV;Choe, C;Rothschild, D;Tiu, GC;Wellington-Oguri, R;Fujii, K;Sharma, E;Watkins, AM;Nicol, JJ;Romano, J;Tunguz, B;Participants, E;Barna, M;Das, R; . Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics